(6)

20. (a) Given

$$
y=10+2 x_{1}^{2} x_{2}+3 x_{2}^{2} x_{3}^{2}
$$

Find all second-order partial
derivatives.
(b) Given

$$
y=x_{1}^{2}+2 x_{2} \text { where } x_{2}=x_{1}^{3}+5
$$

Find out total derivative $\frac{d y}{d x_{1}}$.
(c) If the utility function is

$$
u=\log \left(a x_{1}+b x_{2}+c \sqrt{x_{1} x_{2}}\right)
$$

obtain the ratio of marginal utility.
21. (a) Given a demand function in implicit
form

$$
F\left(Q_{1}, P_{1}, P_{2}, Y\right)=10 P_{1} Q_{1}+5 Q_{1}-2 P_{2}-4 Y-18=0
$$

Use implicit function rule to find-
(i) own price elasticity, E_{11};
(ii) cross-price elasticity, E_{12}; (iii) income elasticity at a point
$\left(R_{1}, P_{2}, Y\right)=(2,1,20)$.
(b) Given the function $Q=A K^{\alpha} L^{\beta}$, where A, α, β are parameters and positive.
(i) Show that the function is a linear homogeneous function.
(ii) Prove that

$$
K \frac{\partial Q}{\partial K}+L \frac{\partial Q}{\partial L}=Q
$$

when the function is linearly homogeneous.
22. (a) Mention the characteristics of convex function with more than one explanatory variable.
(b) Derive the first- and second-order conditions in order to show that indifference curve is negatively sloped and convex to the origin taking the utility function $u=f(x, y)$, where $u=$ total utility, x and y are the quantities of two commodities.
23. (a) Find the extreme values of the function

$$
\begin{equation*}
y=4 x_{1}^{3}+8 x_{1} x_{2}-4 x_{1}^{2}-x_{2}^{2}+10 \tag{5}
\end{equation*}
$$

(b) Given the utility function $u=2 x y$ subject to the budget constraint $3 x+4 y=90$. Find out the equilibrium values of x and y that maximize total utility.

S
 sowoou! ןeuopex umuq!!̣nbe эप puy

$$
\begin{aligned}
& { }^{\boldsymbol{t}} \boldsymbol{W}=\boldsymbol{\tau}_{\boldsymbol{X}} \\
& \left(\tau_{\boldsymbol{W}}-\tau_{X}\right)+001+\tau_{\mathcal{O}}=\tau_{\boldsymbol{X}} \\
& \tau_{\text {KSI }} \cdot 0=\tau_{\boldsymbol{W}} \\
& \tau_{X L} \cdot 0=\tau_{J} \\
& \boldsymbol{Z}_{\boldsymbol{W}}={ }^{\boldsymbol{I}} \boldsymbol{X} \\
& \left({ }^{1} \boldsymbol{X}-{ }^{\mathrm{I}} \boldsymbol{X}\right)+00 Z+\boldsymbol{J}={ }^{\mathrm{I}} \boldsymbol{X} \\
& { }^{1} \boldsymbol{X} \boldsymbol{L} \cdot 0={ }^{1} \boldsymbol{W} \\
& 188 \cdot 0=5
\end{aligned}
$$

τ pue I spdụosqns

$$
\begin{aligned}
{ }^{s} \partial & ={ }^{P} \partial \\
d \varepsilon+O \mathbb{I}- & ={ }^{s} \partial \\
d Z-O G & ={ }^{P} \partial
\end{aligned}
$$

\mathbf{S}

(b) $\quad 6 \mathrm{I}$

$$
\begin{aligned}
& 8 \mathrm{I}=\varepsilon_{x Z}+\mathrm{l}_{\boldsymbol{\varepsilon}} \\
& 9 \mathrm{I}=\varepsilon_{x Z}+v_{x b} \\
& \mathrm{SI}=\varepsilon_{x}-v_{x \varepsilon}+\mathrm{l}_{x Z}
\end{aligned}
$$

s

τ
$\boldsymbol{7}$ puy uә्प

$$
0=\left|\begin{array}{cc}
z+x & S \\
I & z-x
\end{array}\right|
$$

II (q)
ε

(q)

$\varepsilon \quad$ suonenbo snoaus8ouroy-uou

$$
\begin{array}{r}
\left(^{8} O-{ }^{p} O\right) \varepsilon=\frac{\Delta p}{d p} \\
d S+0 I^{-=}={ }^{S} O \\
d S-O I={ }^{P} O
\end{array}
$$

(b) $\mathbf{~} \mathbf{L I}$

TDC (CBCS) Even Semester Exam., 2022

(Mathematical Methods in Economics-II)
Full Marks : 70
$8 Z: S Y 10 W$ SSOd
Time : 3 hours
The figures in the margin indicater

for

$0 Z=01 \times Z$

121

3. Define an exact differential equation.
4. Write two differences between scalar product and vector product.
5. What is orthogonal matrix? Give one example.
6. What is total differential?
7. Mention two characteristics of homogeneous function.
8. Given

$$
y=3 x_{1}+\frac{x_{1}}{x_{2}}+10 x_{2}^{2}
$$

Find $\frac{\partial y}{\partial x_{1}}$.
9. Mention two characteristics of convex function.
10. Mention the geometric definition of concavity and convexity for a two-variable function $z=f\left(x_{1}, x_{2}\right)$.
11. What is unconstrained optimization?
12. What is technology coefficient matrix?

131

13. Write the economic meaning of

$$
\sum_{i=1}^{n} a_{i j}<1
$$

in Leontief static open model.
14. Write two assumptions of technology coefficient matrix (A) in Leontief static open model.
15. Mention two limitations of Leontief static open input-output model.

Section-B

Answer any five questions :
$10 \times 5=50$
16. (a) Find the solution of the following
differential equation :

4

$$
\frac{d y}{d x}+3 x^{2} y=3 x^{2}
$$

(b) Solve :

$$
3 \frac{d y}{d t}+6 y=5 ; \quad y(0)=0
$$

(c) Write down the general procedure of solving exact differential equation.

